• 保存到桌面  加入收藏  设为首页
乐虎国际娱乐官网

深度学习如何“助攻”医学影像?我们来听听学界大拿的解释 CNCC 2017

时间:2017-11-08 18:04:39  作者:admin  来源:医学影像  浏览:123  评论:0
内容摘要:  原标题:深度学习如何“助攻”医学影像?我们来听听学界大拿的解释CNCC2017  雷锋网消息,10月26日上午8:30分,由中国计算机学会(CCF)主办,福州市人民、福州大学承办,福建师范大学、福建工程学院协办的2017中国计算机大会(CNCC2017)在福州海峡国际会展中心...

  原标题:深度学习如何“助攻”医学影像?我们来听听学界大拿的解释 CNCC 2017

  雷锋网消息, 10 月 26 日上午 8:30 分,由中国计算机学会(CCF)主办,福州市人民、福州大学承办,福建师范大学、福建工程学院协办的 2017 中国计算机大会(CNCC 2017)在福州海峡国际会展中心隆重召开。雷锋网作为独家战略合作对本次会议进行全程报道。

深度学习如何“助攻”医学影像?我们来听听学界大拿的解释_CNCC_2017

  雷锋网了解到,本次大会主题是“人工智能改变世界(AI Changes the World)”,共邀请近十位院士、 300 余位国内外计算机领域知名专家、著名国际国内 IT 企业家到会。会议包括 14 个特邀报告、 2 场大会论坛、 40 余场前沿技术论坛及 30 余场特色活动,同期举办科技展,汇聚 80 余家企业参展。大会已连续举办 13 届,此次参会规模也是迄今为止最大、人数最多的一次,共计有近 700 家企事业单位,超过 6000 名专业人士参会参展。

  “深度学习与医疗影像分析”的分论坛在当天下午举行。本次论坛由中南大学邹北骥教授、中科院赵地教授共同担任。据雷锋网了解,该主题论坛是 CNCC 历年来首次设置。福州大学的余轮教授、苏州大学的陈新建教授、中南大学的邹北骥教授、赵于前教授、浙江大学的教授、中国科学院自动化研究所的何晖光教授、西北工业大学的夏勇教授、中国科学院计算机网络信息中心的赵地教授以及中山大学的王瑞轩教授参加了此次论坛。

深度学习如何“助攻”医学影像?我们来听听学界大拿的解释_CNCC_2017

  医疗健康是人工智能最热门的应用领域之一: Nature 和 Science 等国际顶尖发表了很多医疗人工智能相关的工作; Google 、 IBM 等公司也开发了医疗人工智能的最新产品。而医疗人工智能产品落地的领域就包括眼科。眼科疾病严重危害并影响人们的质量,是继肿瘤、心血管病之后的第三位影响质量的病患。近年来,计算机辅助的医学影像分析在加快眼科医学技术的重大突破、提升医疗服务效率和能力等方面具有明显优势,也成为解决医疗资源不足等问题的有效途径。

  在此次论坛上,各位专家、学者、医生,针对眼底图像处理及其在眼科疾病筛查和诊断中的应用问题进行了讨论。

深度学习如何“助攻”医学影像?我们来听听学界大拿的解释_CNCC_2017

  第一位进行主题的嘉宾是福州大学通信与信息系统博士生导师、福建省优秀专家余轮教授,他就“基于医疗大数据的眼科影像分析”的主题和参会者进行分享。余教授表示:国家定义的重大疾病有 25 类,其中糖尿病视网膜病变已经成为我国首要的致盲眼病,每年有 3% 的糖尿病患者(我国 400 万以上)面临失明并需要昂贵的治疗。糖尿病及其并发症造成了严重的社会和经济负担。

  因此,在大数据系统与大数据服务兴起的背景下,为了能够实现个性化的移动医疗健康(管理)服务,具有“可更新、低成本、可分析”特点的交互式健康医学大数据系统、知识库以及知识计算分析模型应运而生,余教授认为我们特别需要建立一个基于知识计算模型的重大疾病风险预警和健康评估引擎。

  余教授表示,国家在疾病预防、基层医疗以及分级诊疗等方面提出多项举措,这也给健康医疗提供了一个好机会。“未来随着基础计算平台和开源平台的丰富成熟,技术方面的壁垒会越来越不明显,整个人工智能的技术准入门槛会越降越低。”

深度学习如何“助攻”医学影像?我们来听听学界大拿的解释_CNCC_2017

  第二位进行主题的嘉宾是苏州大学的陈新建教授,他的报告主题是“医学图像处理方面的研究”。

  陈教授表示,医学成像技术的不断突破,推动了生命科学的,例如 FI 、 PET 、 MRI 等技术,为医生进行诊断和治疗提供了很好的帮助,这里面很关键的一点是多模态医学影像分析技术。“图像处理的量化技术实际上是十分关键的,这对疾病诊断和早期预防具有重要作用。”

  他表示,现在很多量化分析就是分割问题。而有效、自动的器官分割具有非常大的挑战性:各个脏器之间的亮度差异不明显、与周围脏器相连且边界模糊,此外还存在图像伪影、噪声等干扰因素。

  陈教授分别就三种不同的分割方式——区域分割、曲面分割以及区域+曲面的混合分割和进行分享。

  “视网膜是一个复杂的分层结构。许多重要的眼睛疾病以及性疾病的症状都会表现在视网膜上。”多模态视网膜图像分析结合了二维的眼底图像和三维的光学相干断层扫描图像来检测不同组织、血管以及病变结构。图像分割,校准和分类方法是视网膜图像处理与分析的常用方法。

  基于“图论方法的光学相干断层扫描图像分割”等研究方向和研究方法,陈新建的实验室开发了基于 wxWidgets 构架的医学影像处理与分析科研平台— MIPA , 而 MIPA 的定位则是为医学图像处理中的配准,检测,分割及可视化等提供完整的解决方案。他表示,该软件的特点是:可兼容 Windows 、 Linux 、 Mac 三种操作系统,具有多种预处理功能、二维、三维图像可视化以及视网膜分层信息的二维、三维显示。

深度学习如何“助攻”医学影像?我们来听听学界大拿的解释_CNCC_2017

  受邹北骥教授的委托,中南大学的陈再良博士分享了主题为“ OCTSeg-CSU 眼底影像数据集”的。他表示,频域光学相干断层扫描( OCT )相比较于眼底机、超声波等传统医学影像技术,可进行活体眼组织显微镜结构的非接触式、非侵入性断层成像,能够获得更加丰富的生理组织的三维结构信息。

  此外,常见的眼科疾病,如青光眼、老年性黄斑变性等,大多属于视网膜疾病,同时这些疾病的病变部位主要集中于视网膜黄斑区域和视乳头区域,其视网膜生理结构会发生异常变化,这些异常变化可以通过 OCT 图像较清晰地表现出来。

  陈博士表示,“研究发现,相比较于正,青光眼患者黄斑区域的 mRNFL 层的平均厚度明显减小,其诊断能力要好于视盘区域的参数,同时青光眼患者黄斑区域除了 mRNFL 层变薄之外,神经节细胞复合体的厚度也有明显的变薄。”随后,陈博士就杜克大学等和中南大学国内外大学的数据集建设情况进行了分析。

  他表示,中南大学数据集中的健康人数据来自中南大学眼科医学处理中心和中南大学湘雅二医院,所使用的采集设备为 Topcon 3DOCT-1 ,病患数据来自中南大学湘雅二医院,数据集中的图像有两种尺寸,分别为: 1024*885 ,采集模式为黄斑中央凹线D 黄斑扫描。

  对于这套数据集能够应用到什么地方,陈博士表示可以在四个方面得到应用:视网膜层次分隔算法的比较和分析;青光眼辅助诊断的基准;作为机器学习方法提取特征、建立模型的数据集;黄斑处疾病的分析。

  而雷锋网在论坛中简单地采访了邹北骥教授。对于为什么会把计算机视觉引入眼底影像分析,邹教授表示,计算计视觉介入影像最早可以追溯到上世纪50年代的美国太空计划。计算机视觉是模拟人的视觉,而人的视网膜成像可以反映很多眼科包括血压、血糖等性的疾病,通过研究视觉来诊断疾病成为一个自然而然的思。现在通过计算机视觉和大数据、深度学习方面的研究,可以将积累的医学数据为可用的模型,让计算机在精确度和速度上帮助医生提高诊断效率。

  据邹教授介绍,2016年,依托中南大学组建的“移动医疗”教育部-中国移动联合实验室在中南大学湘雅医院顺利通过教育部验收。目前他的团队主要做老年人慢病管理和医学影像分析方面的工作。

深度学习如何“助攻”医学影像?我们来听听学界大拿的解释_CNCC_2017

  下一位嘉宾是来自中南大学的赵于前博士,赵博士 2013 年入选教育部“新世纪优秀人才”支持计划,是中国生物医学工程学会医学图像信息与控制分会委员,中国计算机学会计算机视觉专委会委员。 2009 年 7 月 - 2010 年 8 月在美国理工大学从事博士后研究。2012 年 7 月- 2014 年 7 月在先进储能材料国家工程研究中心从事博士后研究。

  赵博士的主题是“辅助 CT 序列图像肝脏自动分割的方法”。他表示,肝脏分割是计算机辅助诊断和临床应用的的一个重要课题,但是传统的分割方法耗时长,而且结果高度依赖于专家的经验水平。因此,从 CT 图像里进行半自动或全自动的肝脏分割方法就引起了研究人员的关注。赵博士就如何进行图像的自动分割进行了。

深度学习如何“助攻”医学影像?我们来听听学界大拿的解释_CNCC_2017

  随后,浙江大学睿医人工智能研究中心主任以“医疗大数据呼之欲出”为主题发表了,他根据医学人工智能的现状与展望、医学人工智能的目标、人工智能与大数据等三个方面的话题表达了自己的看法。

  吴教授表示,医疗行业存在很多的痛点,患者端、医生端、医院端、医药端、医保端以及分级诊疗都存在一定量的问题。医疗需求的入口也非常的旺盛,从院前、中、后的服务,健康诊断的,健康的等等出现非常多的需求。为了解决这些痛点,行业入局者越来越多,近几年互联网医疗的蓬勃发展在医疗服务的需求和配置方面做出了很多。吴教授表示,未来的医院将只保留最核心的诊断和治疗部分,其他所有职能通通由社会第三方服务机构提供。

  他认为,大数据领域的爆发和硬件性能的飞速提升给医疗人工智能企业的发展提供了“燃料”。吴教授分享了工业界和学术界所取得一些:“去年的 12 月份, Google 发了一篇文章,几乎可以做得比医生更高的水平,拿了 12.8 万的数据,每个图片都有多个医生来标注;今年 2 月份 Nature 上刊登了一个文章,斯坦福大学的皮肤癌诊断拿到 12.9 万的皮肤病的数据;梅西、梅奥、凯撒医疗等企业也取得了丰硕的。

  在吴教授看来,医学人工智能的目标是让患者更了解自己,让医生更清楚患者,让医疗过程更加准确,医疗管理更加科学,第三方服务更加丰富。

深度学习如何“助攻”医学影像?我们来听听学界大拿的解释_CNCC_2017

  随后,来自中国科学院自动化研究所的何晖光教授发表了“基于贝叶斯深度学习的视觉信息编解码”的主题。计算机视觉难以处理复杂背景下的物体识别,而人类视觉具有高效、鲁棒、抗噪等特点。那么如何将人类视觉特性引入计算机视觉模型呢?

  他表示,视觉信息编码是指人脑将外部视觉刺激转换成神经活动信号的过程,研究人脑视觉信息编码,开发类似人脑视觉系统的视觉信息处理模型,对于提高机器的智能能力具有重要意义。

  而何教授结合 fMRI 成像技术特点及人脑视觉信息处理的神经机制,提出了一种基于贝叶斯学习及深度学习理论的视觉图像重建算法。新算法能够根据大脑对视觉刺激的响应重建视觉刺激内容。何教授也表示,该方法也有很多需要改进的地方:复杂自然场景的重构工作还在进行;未来将采用动态编解码,例如变分 RNN 进行视频重建;借鉴机器翻译、图像翻译、对偶学习等思想;尝试其他类型的深度生成模型,如 GAN 等。

深度学习如何“助攻”医学影像?我们来听听学界大拿的解释_CNCC_2017

  接下来的嘉宾是来自西北工业大学的夏勇博士,他的题目是“深度学习在医学图像分割与分类中的应用”。

  夏勇教授展示了深度学习在医学影像应用中可能遇到的小数据集训练、正负样本数据不平衡等实际问题及解决方案,并将这些经验推广到医学图像分割与分类任务中。

  夏勇教授表示,人工智能技术在人脸识别、语音识别等领域取得了突破性进展,很大程度上要归功于数量庞大的多及互联网数据和能力惊人的存储及计算设备的出现。因此,深度学习技术也越来越多的应用在医学图像分析和计算机辅助诊断,特别是解决医学图像分割和分类的问题。

深度学习如何“助攻”医学影像?我们来听听学界大拿的解释_CNCC_2017

  在接下来的环节中,中国科学院计算机网络中心、论坛赵地博士发表了题为“深度学习与医学图像分析”的主题。赵地博士表示,深度学习辅助疾病诊断现在非常火热,可以在多个领域中发挥作用,例如脑科、颈科、眼科以及皮肤科等。他着重介绍了“深度学习在阿尔兹海默病方面的作用”。“阿尔兹海默病是发病率最高的老年性神经退行性疾病,高龄人群表现尤为明显。早期发现,早期干预对于减轻病人脑部损害有非常重要的意义。”

  2015 年,赵地博士与天坛医院共同申请了市科委重点项目“基于MRI图像大数据分析的老年退行性疾病早期预警算法及表示物发现 ”,主要从事 AD 大数据收集、 AD 数据预处理、 AD 大数据分析、临床诊断决策支持模型构建、平台建设五方面的研究,旨在通过医工结合,运用深度学习、大数据驱动的方式分析核磁影像,提早筛查老年痴呆症,为医生早期的诊断与干预提供帮助。

  赵地博士表示,为提高 demo 版本的精准度,赵地博士找到了具备先进 PET 技术的宣武医院,并由老年痴呆影像诊断专家李坤城主任主持申请了“脑计划”项目。目前,项目已获得资助。

  此前,赵地博士曾表示,在项目的未来应用方面,将有和影像云平台、核磁机厂商以及和医院合作等三个方向。他在此次论坛上还透露了一个与影像云平台合作项目的最新进展:明年第一季度将发布老年痴呆智能影像诊断的系统。

深度学习如何“助攻”医学影像?我们来听听学界大拿的解释_CNCC_2017

  论坛的最后一个主题是由中山大学数据科学与计算机学院的王瑞轩副教授带来的“医学图像中的异常检测”。

  王瑞轩副教授是中山大学”百人计划”引进人才。 2008 年在新加坡国立大学获得计算机视觉博士学位。 2007 年以来以主研人员参与了多项跨学科跨领域的英国及欧盟研究基金资助的科研项目,所涉及的研究横跨计算机视觉和机器学习的多个子领域,包括低级视觉的图像去噪,中级视觉的图像特征编码、图像分割、和图像浏览,高级视觉的目标检测和图像分类,以及机器学习中流行学习、度量学习、高斯过程学习和深度学习。

  王教授表示,异常检测是图像处理和模式识别领域的重要应用之一。利用图像处理和机器学习算法对图像进行分析,检测出图像中的异常部分,不仅能够减轻人工处理的工作量、克服不同操作人员之间的主观性差异,而且还具有灵敏度高、检测率高、误检率低、快速准确等优点,因此越来越多地应用于医学图像处理等不同场合,具有广阔的应用前景。

  随后,论坛的各位嘉宾参加了“深度学习与医疗影像分析”的提问讨论环节,就“数据训练”、“人工智能产品的落地”等一系列话题向专家提出了自己的思考,各位专家也从自己的专业角度给听众进行答疑解惑。

  中国计算机学会主办的“深度学习与医疗影像分析”的分论坛在 10 月 26 日下午结束,正如嘉宾在报告中所传达的观念一样:深度学习的出现对很多传统的研究方法造成了一定的冲击,这时候,顺势而为地应用深度学习,将深度学习的应用到临床中去,才能让科研的发挥更大的价值。与此同时,研究者们也能够把精力投入到其他更深层次的研究中去。而此次大会无疑把深度学习的应用案例以及深度学习时代的新研究标的目的传递给了更多人。返回搜狐,查看更多


相关评论